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ABSTRACT

The Mellor-Yamada hierarchy of turbulent closure models is reexamined to show that the elimination of a
slight inconsistency in their analysis leads to a quasi-equilibrium model that is somewhat simpler than their
level 22 model. Also the need to impose realizability conditions restricting the dependence of exchange coefficients
on shearing rates is eliminated. The model is therefore more robust while the principal advantage of the level
2Y%2 model, namely the solution of a prognostic equation for turbulent kinetic energy is retained. Its performance

is shown to be not much different from that of level 2Y:.

1. Introduction

A hierarchy of turbulent closure models desciibed
by Mellor and Yamada (1974) has been in use in geo-
physical flows. It is based on an order-of-magnitude
analysis of small deviations of Reynolds stresses and
heat flux from the state of local isotropy. In the limiting
case of near isotropy, one obtains an algebraic set of
equations for all turbulence quantities, including tur-
bulent kinetic energy and temperature variance. This
fully algebraic model describes a situation in which
mechanical and buoyancy production are exactly bal-
anced by dissipation in turbulent energy and temper-
ature variance equations. Production terms balance
pressure-redistribution terms in the Reynolds stress and
heat flux equations. The advective and diffusive terms
are neglected in all equations, thus making the state of
near isotropy identical with the state of local equilib-
rium. Donaldson (1973) called such a model “super-
equilibrium” model.

This model is classified as level 2 closure in the Mel-
lor and Yamada (1974, 1977) hierarchy and is attrac-
tive mainly because of its simplicity and robustness.
However, it is deficient in situations where the ne-
glected advection and diffusion terms are not small, as
for example, in convective entrainment at a density
interface in stably stratified environments. An alter-
native is the 2% level closure model, in which turbulent
energy is calculated prognostically from the transport
equation, but Reynolds stress equations are solved as-
suming local equilibrium. This model has been widely
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used in different geophysical applications, including
small- and meso-scale oceanography, micro- and me-
soscale meteorology, and global circulation models.

The application of the Mellor and Yamada 2': level
model could, however, cause some problems for
strongly stable or unstable stratification. For example,
for strong unstable stratification, the model can, in
some circumstances, lead to w? > g2 To deal with
these problems, Mellor and Yamada (1982), Hassid
and Galperin (1983) and Helfand (1985) suggested in-
clusion of various limitations on the dependence of the
exchange coefficients on parameters involving velocity
and density gradients and on the turbulent energy and
length scale. These methods succeed in preventing sin-
gularities in the computed results, but because of their
arbitrary nature, it is desirable to avoid imposing these
realizability conditions, when feasible.

The model proposed here is based on the same sys-
tematic expansion of Reynolds stress and heat flux
equations as in Mellor and Yamada (1974). However,
the removal of a slight inconsistency in their scaling
arguments results in a simpler but more robust quasi-
equilibrium model. The resulting turbulent exchange
coefficients are simpler than the corresponding ones
for the level 2'2 model and at the same time, the need
to impose realizability conditions restricting their de-
pendence on shearing rates is eliminated. The turbulent
energy is however still calculated prognostically using
transport equations, thus preserving the principal ad-
vantage of the level 22 model.

2. Derivation of the quasi-equilibrium model

We shall follow closely the paper of Mellor and Ya-
mada (1974, hereafter referred to as MY) in which the
reader will find more details.
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A sequence of closure assumptions made in MY
leads to a system of equations for the Reynolds stress
tensor, %;u;, forming the basis of the level 4 model. An
equation can then be formed which is the difference
between the Reynolds stress equation and the product
of 6;/3 and the trace of the same equation [see MY
Egs. (9) and (8)]. Defining ¢ = u? the equation is
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Here / is the master length scale of turbulence, g; = (0,
0, —g), the acceleration due to gravity, f; = (0, £, f),
the planetary vorticity vector, and 8 = —(3p/37),/p.
Following MY, let us introduce nondimensional
tensors a; and b; characterizing the departure from local
" isotropy:

iy = (% + a,-j)qz’ aii = 0, Q)
w0 = bigs, (5)
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b=y, (6b)
O(a) = O(b). (6¢)

IIV - |- denotes the norm of the matrix.
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Recall the scaling assumptions of MY, valid for all
the models in their hierarchy. Without going into the
details they are (using A instead of A, for convenience
in scaling notation)

U = O([aUi/ax;l1%), (7a)
6,2 = O([|80/ax(%), (7b)
[ =0(l) = O(h), (7¢)
a*=1Il/A, U,=a'g/A, (7d)
B =I/&, 6, =b"'¢/A, (Te)
886 =bT'q¥A. (7f)

Let us rewrite Eqgs. (1) and (2) in analogy with Egs.
(12), (13) of MY using scaling hypotheses (7a-f) and
the additional assumption [Eq. (19) in MY]

Ug?*/L = ag®/A, (8)

which, when rewritten in the form L/U = a"!'A/q, as-
sumes that eddy-turnover time ¢, = A/q is smaller than
the advective time scale ¢, = L/U by the same factor,
a, which characterizes the departure from the local iso-
tropy. (Note that this assumption relates expansion by
the deviation from local isotropy with the departure
from local equilibrium. This connection is behind the
above mentioned analogy between the level 2° model
of MY and the superequilibrium model of Donaldson,
1973). ‘ T

We shall now evaluate twice the turbulent energy
equation (the trace of the Reynolds stress equation):
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where, to obtain an estimate of the order of each term,
use is made of Egs. (7) and (8). Repeating the process
with Eq. (1) we have
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Neglecting terms of O(a?) in Eq. (10) will result in the level 3 model of MY. Instead, let us proceed one step
further wherein the right hand side of Eq. (9), after multiplication by §,/3, is used to replace similar terms in
Eq. (10). After re-ordering the terms, the resulting equation is
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Equation (13) replaces Eq. (21) in MY for the level 3 . uw — + ow —
model and it does not contain, explicitly or implicitly, _ 0z 9z

. aU —
MY 2% and 3 level models. Following MY, let us re- w? - Cig?) 9z Bgud |. (16)
write Equations (12) and (13) in the usual format con-
venient for geophysical boundary layers, omitting O(a?)

terms:

any term of the order O(a?) or higher, in contrast to w 3/,
W
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One should keep in mind that contraction of the di-
agonal components of the Reynolds stress tensor, Eq.
(15), implies

?+P+Eﬁ=fp—9ﬂ)
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This result is consistent with the order-of-magnitude
analysis performed above in which all Q(a 3 terms were
neglected In the level 2¥2 model #?, v%, and w? sum
up to g2 exactly. However, the dlﬁ‘erence is not signif-
icant since only ¢? is calculated prognostically; the
components of g* can be then found diagnostically and
they have no feed back on the turbulent kinetic energy
equation, Eq. (14). Besides, after some algebraic ma-
nipulations correct to order O(a?), Eq. (15) can be re-
written so that #2, v* and w? add up to g2 exactly.

Similar scaling analysis can be performed on the
temperature variance equations (5) of MY, where we
shall distinguish between /;, A, and b, A;:
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Following MY we assume A, = XA,. The ratio of the
terms in the left hand and right hand sides of Eq. (17)
is

at;

(Ve -5

2A°

(18)

where Eq. (8) was used and an assumption was made
that the advective length scale, L, is the same for mo-
mentum and heat transfer. Using Egs. (3) and (21) one
can evaluate the numerical value of the ratio, (a/2)(A;/
A,), appearing in Eq. (18), to be 0.072. This value is
very close to b* (=0.073). Therefore, the advective and
" diffusive terms in Eq. (17) may be dropped as small
O(b?) terms, which is consistent with our approxima-
tion. It means that the production and dissipation of
the temperature variance, 62, are in local equilibrium
to O(?). One should keep in mind, however, that this
kind of argument is not a result of rigorous application
of asymptotic analysis. It provides only a posteriori
justification for neglecting all advective and diffusive
terms in Eq. (17), an approximation known to perform
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well in geophysical boundary layers. Now, turbulence
heat flux and temperature variance equations can be
written as follows (Mellow and Yamada, 1982):

w2+ Y
— z 0z
uf
vl =—-3—12 W£+w0ﬂ/ , (19)
wo q 0z 0z
90 —
20V 3
3z Bgt
— Az 30
> = — = whp —
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The constants of the model as specified in Mellor and
Yamada (1982) are

(41, By, Cy, A2, By) = (0.92, 16.6, 0.08, 0.74, 10.1).

e3))

The master length scale, /, can be found from an al-
gebraic (MY, Hassid and Galperin, 1983) or a differ-
ential (Mellor and Yamada, 1982) equation. We have
found it necessary to limit / in stably stratified flows
according to

: - 0.53¢

1<—A4,
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_ ae 172
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is Brunt-Viiisili frequency. This restriction has been
used, for example, by Andre et al. (1978) and Hassid
and Galperin (1983) to reflect the limiting effect of
stable stratification on the size of turbulent eddies.

The set of equations (14)-(22) along with the mean
momentum, continuity and heat balance equations
forms the basis of the present model, which could be
referred to as 2% level model, since it is intermediate
between the 2 and 2 level models of MY hierarchy
in complexity. However, it is, perhaps more precise
to classify it as level 3 because it is derived by a con-
sistent elimination of O(a?) and O(#%) terms in the level
4 model. (In this sense, both MY 3 and 2Y: level models
actually fall between levels 3 and 4.) The next lower
order yields level 2 equations just as in MY.

(22)

where

3. Vertical turbulent exchange coefficients

From Equations (15), (16), (19) and (20) expressions
for these coefficients can be obtained:

Ky = qlSy, Ky = qlSh, (23)

where

Su = A,

[1—- 3A2GH(6A| + By)J(1 — 94,4,Gy)

- (24)
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Equations (24) and (25) are identical to Mellor and
Yamada’s (1982) equations (38) and (39) after substi-
tution (P + Pp)/e = 1.

An advantage of the present model is that the tur-
bulent exchange coefficients and the vertical compo-
nent of turbulent kinetic energy depend only on Gj.
Absence of dependence of Sy, and Sy on velocity gra-
dient removes the necessity to impose a realizability
condition related to it, as described, for instance, in
Hassid and Galperin (1983).

The upper bound of G corresponding to the case
of unstable stratification should be set by the require-
ment that G, remains non-negative in the level 2
model, where

SuGre + S = 5 @7
1
N (8U\? av\?
= | — —_— + — .
o) ()] e
This requirement can be written as
Gy < [42(124, + B, + 3By)]"' = 0.0233. (29)

For the limiting value of G one will find that w?/g2
= ().555, thus making the two other components equal
to u?/g® = v*/q* = 0.22. These values are in rather
good agreement with the data of Willis and Deardorff
(1974) for convective turbulence.

In the case of stable stratification, using the definition
of Gy, Eq. (26), and Inequality (22), one finds:

Gy = —(0.53)> = —0.28. (30)

It can be shown, using Egs. (15) and (25), that as Gy
reaches its minimum given by (30), the ratio, w?/¢?,
is bounded according to

WE_oL(,_ 641\ _ 1 -34,B,Gy
" 3 B, | 1 — 34,G(64, + B,)

Inequality (31) shows that as small scale turbulence is
suppressed by buoyancy forces and the vertical com-
ponent of fluctuations and the total turbulence kinetic
energy both go to zero, their ratio, w?/g? remains
bounded. The model does not account for vertical
fluctuations associated with internal wave motions that
persist long after turbulent mixing is extinguished; few
models do. Inequality (31) also suggests that even under
strong stable stratification, the level of anisotropy does
not exceed the critical value established by Mellor &
Yamada (1982) as

#hinlq” = 0.12,

=0.15. (31)
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12 being the minimum among u?, i = 1, 2, 3, at
which some of the basic assumptions of the model may
become invalid. Figures 1 and 2 show Sy, Sy and
w?/q? as functions of Gy.

4. Comparison of the quasi-equilibrium and the 22
level models

Martin (1985) has compared the performance of
both MY 2 and 2% level models against mixed layer
observational data in the Pacific Ocean. These data
were collected at OWS November and Papa in the
eastern North Pacific. The comparisons were made for
a period of an entire year during 1961 when data cov-
erage was excellent and relatively error and gap free.
Unlike Mellor and Yamada (1982), Martin (1985) used
an algebraic length scale equation in both the 2 and
2 level models.

Martin (1985) found that both level 2 and 2> models
yield similar results over the entire year, despite big
seasonal changes in external forcing. The differences
between the two models were not significant. Since, as
was stated above, the present quasi-equilibrium model
is between levels 2 and 2Y2 of MY in the hierarchy, it
is to be expected that its performance will be similar
to that of the 2% level model. Therefore, no compar-
isons of this model with ocean station Papa and No-
vember data will be attempted. Instead, we shall con-
centrate on comparisons of the relative performance
of the level 2!2 and quasi-equilibrium models when
both are run with identical initial and boundary con-
ditions to simulate available laboratory data.

To assess this relative performance, the experiments
of Kato and Phillips (1969) (KP), Kantha et al. (1977)
(KPA) and Deardorff and Willis (1985) (DW) have
been chosen. We need to emphasize though that the
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G

FIG. 1. Dependence of stability parameters S), and Sy on Gy,
as given by Eqs. (24) and (25).
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FIG. 2. Vertical component of the turbulence kinetic energy, w2
as a function of Gy as given by Eq. (15).

>

primary goal of this section is to compare the perfor-
mance of the models against each other while the ex-
perimental data are used rather as benchmarks to place
the results in proper context. In all the calculations,
the same algebraic length scale as in Hassid and Gal-
perin (1983) was used. However, the limitation on the
length scale in stable stratification was slightly modified,
so that strong density changes like the one occurring
at the base of the mixed layer in the KPA experiment
could also be treated properly. Thus, the length scale

VoL. 45, No. 1

was taken as the smallest value that satisfies the fol-
lowing two inequalities:

2+l/x

K’q* = ﬁgf T2 - T(9))dz',  (32a)

z

Z
K’q* = Bg f 1 [T(z) - T(z")}dz’,  (32Db)
z-lfx .
which impose two restrictions on /. The physical basis
for this is the limiting effect of gravitational forces on
the size of the eddies (Bougeault and Andre, 1986).
The constant K is chosen equal to 3«, so that for con-
stant temperature gradient, the limitation on the length
scale is the same as given by Inequality (22). The nu-
merical value of 4, was set to 0.587 providing a tur-
bulent Prandtl number of 1.0, as suggested by Hassid
and Galperin (1983). However, the results are not sen-
sitive to small changes in A4, or Pr,.

In Fig. 3, the predicted mixed layer development is
shown for the two models, along with the experimental
results of DW, in which convectively-induced turbu-
lence penetrates a region of constant stable temperature
gradient of 20°C m™". The theoretical predictions for
three different definitions of the boundary layer height
are shown together with the experimental points. In
spite of the different limitation on the value of Gy,
both 2% and the present models give results that are
almost indistinguishable from each other and in good
agreement with the experimental data.

In Figs. 4 and 5, the predictions of the two models
are shown for penetration of mechanically-induced

30

H (c_rn)

15 L

L t
100 200 300 400

L 1
500 600 700 800 900

T (sec)

FIG. 3. Mixed layer growth in the penetrative convection experiment. Data of Dear-
dorff and Willis (1985); X—height at which the temperature profile first crosses the
ambient profile; O—height at which the temperature profile joins the ambient tem-
perature profile. Numerical predictions: (dashed) quasi-equilibrium model and (solid)
212 model. The three theoretical mixed-layer heights are s,—the height at which the
heat flux is equal to zero; i—the height at which the negative heat flux reaches its
maximum; Am.—the height of maximum penetration.
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FIG. 4. Mixed layer growth in the experi

ment of Kato and Phillips (1969). Data: O,

®. Numerical predictions: (solid) quasi-equilibrium model and (dashed) 22 model.

turbulence in stably stratified media, along with the
data of KP for constant ambient density gradient and
KPA for a sharp discontinuity in the initial ambient
density profile. Again, the two models are shown to
produce results close to each other. There are differ-
ences of 3%-4% for KP and of 10% for KPA. The 2t
level model gives a larger value for the mixed layer
height than the present quasi-equilibrium model. Both
models rather overpredict the experimental results, es-
pecially for strong stratifications. It is possible that the
effect of the tank curvature, which was not taken into
account in the present calculations but which appears
to affect entrainment experiments in an annulus (Mel-
lor and Strub, 1980, Deardorff and Yoon, 1984) might
be appreciable in these experiments. More recent ex-

periments on mixing in stratified fluids by Narimousa
et al. (1986) in a race-track shaped flume are however
in good agreement with KPA results, so that the extent
of contamination by curvature is still rather uncertain.
In any case, as was stated above, the relative perfor-
mance of the two models is of primary interest in the
present section and the results strongly suggest that
there is little difference between the two.

5. Discussion and conclusions

The scaling analysis performed in this paper shows
that the quasi-equilibrium turbulent energy model
presented here removes a small inconsistency in the
MY hierarchy. This model is simpler than the 2V2

22
20} E
18- 1
16} H
144 1
£ 12| i
£
- 10 h
8 — -
6l D;=27cm
4 I 3p,/p=0.275
) I spp=02
0 1 1 1 1 1 1
0 40 80 120 160 200 240 280

T (sec)

FIG. 5. Mixed layer growth in the experiment of Kantha et al. (1977). Data: O, 0.
D is the initial depth of the interface. Numerical predictions: (solid) quasi-equilibrium
model, (dashed)-2% model.
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model of MY but retains its principal advantage be-
cause of the prognostic calculation of turbulent energy.
Among the advantages of the present model are simpler
expressions for the turbulent exchange coefficients and
the fact that the need for restrictions on the values of
shear strain rates appearing in these coeficients in the
2%, model is eliminated, thus making the model more
robust. Also, both stability parameters, S)sand Sy, de-
pend only on Gy, which makes the analytical analyses
of the turbulent exchange processes under different
circumstances more feasible. For example, ‘when the
rotational terms are retained in the equations for tur-
bulent correlations (rather than neglected as is the con-
ventional practice), it becomes hard to deduce and im-
pose realizability conditions on exchange coefficients
which are no longer simple scalar quantities. Under
those circumstances, the quasi-equilibrium model with
fewer realizability conditions possesses a distinct ad-
vantage. Also, the numerical performance of the model
is expected to be very similar to that of the 2% level
model in most cases, and therefore it is believed that
the proposed model could be as useful as the 2Y2 level
model.
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